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Abstract
Automatic reading of meters is a challenging task in the field of computer vision

and scene text recognition that can benefit the very labor intensive process of consumption
measurement of clients from electricity companies. In this paper, we propose an automatic
meter recognition approach consisting of counter detection, digit segmentation and recognition.
Also, we present the AMR dataset, containing 2000 images of different electricity meter models
(10000 digits) taken from a local electricity company to be used as a standard benchmark. The
method proposed was capable of 99.75% accuracy on counter detection while achieving 98.90%
accuracy on individual digit recognition and 94.62% on counter recognition. An alternative
approach for digit recognition was also tested and compared.

Keywords: deep learning, optical character recognition, electric meters.



Resumo
A leitura automática de medidores é uma tarefa desafiadora no campo da visão

computacional e reconhecimento de texto de cena que pode beneficiar o processo muito trabalho
intensivo processo de medição de consumo de clientes de empresas de eletricidade. Neste
artigo, propomos uma abordagem de reconhecimento automático de medidores que consiste em
detecção de contador, segmentação e reconhecimento de dígitos. Além disso, apresentamos o
dataset AMR, contendo 2000 imagens de diferentes modelos de medidores de eletricidade (10000
dígitos) extraidas de uma companhia de eletricidade local para serem usadas como padrão de
referência. O método proposto foi capaz de 99,75% de acurácia na detecção de contra-detecção,
ao mesmo tempo em que atingiu 98,90% de acurácia no reconhecimento de dígitos individuais e
94,62% no reconhecimento de contadores. Um método alternativo para recohecimento de dígito
também foi testado e comparado.

Palavras-chave: deep learning, reconhecimento óptico de caracteres, medidores elétricos.
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Chapter 1

Introduction

The objective of this monograph is to propose a method using deep learning in both stages of
counter detection and recognition to solve the task of Automatic Meter Reading (AMR). The
topics that will be covered in this paper are:

• previous works in the field;

• present a new public dataset to be used as a benchmark for meter reading;

• propose a method for counter detection;

• propose and compare two methods for digit recognition;

• discuss the suitability of the methods to be used in mobile devices;

AMR refers to automatically record the consumption of electric energy, gas and water for
both monitoring and billing. Despite the existence of smart readers [16], they are not widespread
in many countries and the reading is still done manually on site by an operator, who takes a
picture as reading proof [33, 10].

Since this operation is prone to errors, another operator needs to check the proof image
to confirm the reading. This offline checking is expensive in terms of human effort and time, and
has low efficiency [3]. Moreover, due to the large number of images to be evaluated, the audit is
usually done by sampling [23] and errors might go unnoticed.

This audit being performed automatically would reduce mistakes introduced by human
factor and save manpower. Furthermore, reading could also be done fully automatically through
cameras installed in the meter box [30, 7]. Image-based AMR has advantages such as lower cost
and quicker installation, since it does not require renewal or replacement of existent meters [35],
and can ease the very labor intensive process of consumption measurement.

AMR based on images includes three phases, namely: (i) counter detection, (ii) digit
segmentation and (iii) digit recognition. Counter detection is the fundamental stage, as its
performance largely determines the overall accuracy and processing speed of the entire AMR
system.

Deep Learning approaches are particularly dependent on the availability of large
quantities of training data in order to generalize well and yield high classification accuracy on
unseen data [27]. Some previous works on AMR (e.g., [10, 3]) employed huge datasets to train
and evaluate their systems, however, these datasets were not made public. This is very common
in AMR, since the images commonly belong to the [electricity, gas, water] company. In this
sense, we introduce the AMR dataset, a new public dataset with 2000 images (i.e., 10000 digits),
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in order to assess the performance of the methods of each phase and provide means to compare
with future works.

This work is part of a more comprehensive research paper written with the joint efforts
of Rayson Laroca (UFPR), Victor D. Barroso (UFPR), Matheus A. Diniz (UFMG) and Gabriel
R. Gonçalves (UFMG), supervised by David Menotti (UFPR) and William Robson Schwartz
(UFMG).

This paper is organized as follows. We briefly review related work in Section chapter 2.
The AMR dataset is introduced in chapter 3. Chapter 4 presents the proposed Convolutional
Neural Network (CNN)-based approaches for AMR. We report and discuss the results in
Section chapter 5. Conclusions and future work are given in chapter 6.
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Chapter 2

Related Work

AMR intersects with other Optical Character Recognition (OCR) applications, such as robust
reading and license plate recognition, as it must reliably extract text information from images
taken under different conditions. Although AMR is not as widespread in the literature as these
applications, a satisfactory number of works have been performed in recent years. Here a
introduction about these works is presented. This section concludes with final remarks.

Many approaches exploited the vertical and horizontal pixel projections histograms for
counter detection [37, 30, 7]. Projection-based methods can be easily affected by the rotation of
the counter. Refs. [8, 23, 2, 10, 3] took advantage of prior knowledge such as counter’s position
and/or its colors (e.g., green background and red decimal digits). A major drawback of these
techniques is that they might not work on all meter types and color information is not stable
when the illumination changes. Other works include the use of template matching [23] and
Adaboost [11]. In the latter, normalized gradient magnitude, Histogram of Oriented Gradients
(HOG) and LUV color channels were adopted as features.

Projection and color-based approaches have also been widely employed for digit
segmentation [8, 35, 19]. The use of morphological operations with Connected Components
Analysis (CCA) was made in [3, 2], however, it depends largely on the result of binarization, as it
cannot segment digits correctly if they are connected or broken. In [7], a binary digit/non-digit
Support Vector Machine (SVM) was applied in a sliding window fashion, while Gallo et al. [10]
exploited Maximally Stable Extremal Regions (MSER). In [10], the MSER algorithm failed to
segment digits in images with problems such as blur and perspective distortion.

Nodari & Gallo [21] exploited an ensemble of Multilayer Perceptron (MLP) networks to
perform the counter detection and digit segmentation without preprocessing and postprocessing
stages. Since low F-measure rates were achieved, extra techniques were added in [33]. In
summary, a watershed algorithm was applied to improve counter detection and Fourier analysis
was employed to avoid false positives in digit segmentation. Although better results were attained,
only 100 images were used to evaluate their system performance, which may not be representative
enough.

Template matching [8, 19, 37] was widely used for digit recognition. Nevertheless, it is
known that if a digit is different from the template due to any font change, rotation or noise, this
approach produces incorrect recognition [6]. Therefore, many authors have employed an SVM
classifier to this end. In [7, 33], simpler features such as pixel intensity were used in training,
while HOG descriptors were adopted as features in [23, 10]. Lastly, the open-source Tesseract
OCR Engine [31] was applied in [21, 3, 33], however, satisfactory results were not obtained in
any of them.
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AMR presents an unusual challenge in OCR: rotating digits. Typically, this is the
major cause of errors, even when robust approaches are employed for digit recognition [36, 11].
In [19], this problem was addressed with an algorithm based on the Hausdorff distance, achieving
excellent recognition results in real time. It should be noted, however, that all images were
extracted from a single meter and a controlled environment was required since there were no
preprocessing stage and no algorithm for angle correction.

Recently, deep learning approaches have won many pattern recognition competitions,
even achieving superhuman visual results in some domains [28]. This motivated the use of deep
learning for AMR, since only two works [3, 11] could be found employing CNNs in this context
and both use private datasets and conventional image processing with handcrafted features in at
least one stage. Moreover, (i) the images used in [11] are mostly sharp and very similar, which
does not represent real-world conditions, and (ii) the poor digit segmentation accuracy obtained
in [3], i.e. 81%, through a sequence of conventional image processing methods, prevents its use
in real applications.

During the bibliographical research, only Nodari & Gallo [33] was found to have the
datasets used in their experiments available. They proposed two datasets: one to evaluate the
accuracy of their approach at each AMR stage and another to evaluate its overall accuracy. These
datasets are composed of gas meter images with resolution around 640 × 480 pixels and the
counter occupying a large portion in the image, which facilitates its location. Additionally, both
datasets are very small (153 and 100 images) and the cameras used to capture them were not
specified.

2.1 Final Remarks
The approaches developed for AMR are still limited. In addition to the aforementioned topics
(i.e., private datasets and handcrafted features), many authors do not report the computational
time of their approaches, making it impossible to examine its speed/accuracy trade-off, as well as
its applicability. In this paper, for the first time, CNNs are used for both counter detection and
recognition. In the proposed dataset, CNNs that achieved state-of-the-art results in other OCR
applications were evaluated, reporting the computational time and the accuracy at digit/counter
recognition level, in order to enable further comparisons.
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Chapter 3

The AMR Dataset

The dataset contains 2,000 images taken from inside a warehouse of the Energy Company Of
Paraná (Copel), which directly serves more than 4 million consuming units in the Brazilian state
of Paraná [4]. Therefore, the dataset presents electric meters of different types and in different
conditions. Fig. 3.2 shows the diversity of the dataset. One can see that the counter occupies a
small portion in the image, which makes it difficult to locate it.

Meter images commonly have some artifacts (e.g., blur, reflections, low contrast, broken
glass, dirt, among others) that may impair the reading of electric energy consumption. In addition,
it is possible that the digits are rotating (e.g., between digits 4 and 5) in some kinds of counters.
In such cases, the lowest digit was considered, since this is the protocol adopted at Copel. The
exception is between digits 9 and 0, where it should be labeled as 9.

The images were acquired with three different cameras and are available1 in the JPG
format with resolution between 2,340 × 4,160 and 3,120 × 4,160 pixels. The cameras used were:
LG G3 D855, Samsung Galaxy J7 Prime and iPhone 6s. As the cameras (cell phones) belong
to different price ranges, the images presumably have different levels of quality. Additional
information can be seen in Table 3.1.

Camera Images
LG G3 948
J7 Prime 583
iPhone 6s 469

Total 2000

Info Counters Digits
Minimum Size 247 × 98 35 × 63
Maximum Size 1689 × 365 168 × 283
Average Size 682 × 180 76 × 134
Aspect Ratio 3.79 0.57

Table 3.1: Dataset information: (a) how many images were captured with each camera; (b)
dimensions of meter counters and digits.

Note that, due to the nature of electric meters, the less significant digits (i.e., 0 and 1)
have many more instances than the others (see Fig. 3.1). Nevertheless, digits 4-9 have a fairly
similar number of examples.

The dataset is split into three sets: training (800 images), validation (400 images) and
testing (800 images). This protocol was adopted (i.e., with a larger test set) to allow the reported
results to be more statistically significant. This division was made randomly.

Every image has the following annotations available in a text file: the camera in which
the image was taken, the counter’s position and text, as well as the position of its digits. Each
counter (regardless of meter type) has 5 digits, and thus 10,000 digits were manually annotated.

1The AMR dataset is publicly available to the research community at https://web.inf.ufpr.br/vri/
databases/aemr/

https://web.inf.ufpr.br/vri/databases/aemr/
https://web.inf.ufpr.br/vri/databases/aemr/
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Figure 3.1: Frequency distribution of digits in the AMR dataset.

Figure 3.2: Sample images of the AMR dataset (some images were slightly resized for display
purposes).

3.1 Final Remarks
The AMR dataset consists on 2000 electricity meter images (10000 digits) extracted using the
default camera of 3 common types of smartphones at different resolutions. Distortion, digit
rotation, partial occlusion of digits and small counter size are common in the dataset images,
turning digit recognition into a very challenging task. All meters contain 5 digits, and, because
the distribution frequency of digits is uneven, methods to solve the problem must account for this
in order to avoid biased conclusions.
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Chapter 4

Methodology

Electric meters have many textual information (e.g., meter specifications and serial number)
that can be confused with the counter’s text (i.e., the electric energy consumption). Moreover,
the Region of Interest (ROI) usually occupies a small portion in the image. Therefore, first the
counter region is located and then perform its recognition in the detected patch. both stages are
tackled by leveraging the high capability of state-of-the-art CNNs.

This section describes the methodology and it is divided into two subsections: counter
detection and counter recognition. It is worth noting that all parameters (e.g., CNNs input size,
number of epochs, among others) are defined based on the validation set.

4.1 Counter Detection
Recently, great progress has been made in object detection through models inspired by YOLO [24,
34, 32], a CNN-based object detection system which regards detection as a regression problem.
For that reason, it was decided to fine-tune it for counter detection. However, as only one class is
required for detection and the computational cost is one of our main concerns, a smaller model
was chosen, called Fast-YOLO [24], which uses fewer convolutional layers than YOLO and
fewer filters in those layers. Despite being smaller, Fast-YOLO (architecture shown in Table 4.1)
yielded great detection results in preliminary experiments.

Table 4.1: Fast-YOLO network used to detect the counter region.

Layer Filters Size Input Output
0 conv 16 3 × 3/1 416 × 416 × 3 416 × 416 × 16
1 max 2 × 2/2 416 × 416 × 16 208 × 208 × 16
2 conv 32 3 × 3/1 208 × 208 × 16 208 × 208 × 32
3 max 2 × 2/2 208 × 208 × 32 104 × 104 × 32
4 conv 64 3 × 3/1 104 × 104 × 32 104 × 104 × 64
5 max 2 × 2/2 104 × 104 × 64 52 × 52 × 64
6 conv 128 3 × 3/1 52 × 52 × 64 52 × 52 × 128
7 max 2 × 2/2 52 × 52 × 128 26 × 26 × 128
8 conv 256 3 × 3/1 26 × 26 × 128 26 × 26 × 256
9 max 2 × 2/2 26 × 26 × 256 13 × 13 × 256
10 conv 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
11 max 2 × 2/1 13 × 13 × 512 13 × 13 × 512
12 conv 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024
13 conv 1024 3 × 3/1 13 × 13 × 1024 13 × 13 × 1024
14 conv 30 1 × 1/1 13 × 13 × 1024 13 × 13 × 30
15 detection
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For counter detection, we perform two minor changes in the Fast-YOLO1 model. First,
we recalculate the anchors for the AMR dataset using the algorithm available in [1]. Then, we
reduce the number of filters in the last convolutional layer from 125 to 30 in order to output 1
class instead of 20. The number of filters in the last layer is given by

f ilters = (C + 5) × A. (4.1)

where A are the anchor boxes (we use A = 5) used to predict bounding boxes each with four
coordinates (x, y, w, h) and confidence, and C are the class probabilities [25].

Fast-YOLO’s multi-scale training was employed: every 10 batches the network randomly
chooses a new image dimension size from 320× 320 to 608× 608 pixels. Then, we use 416× 416
images as input since the best results (speed/accuracy trade-off in the validation set) were obtained
with this dimension as input.

In cases where more than one counter is detected, only the detection with greater
confidence was considered, since each image/meter has only one counter. Next, a margin (with
size chosen based on the validation set) on the detected patch was added so that all digits are
within the patch for the recognition stage. This is done to avoid losing digits in cases where
the counter is not very well detected. A negative recognition result is given in cases where no
counter is found.

4.2 Counter Recognition
Two CNN-based approaches were employed for counter recognition, since they presented good
results in other OCR applications. These approaches are: CR-NET [20] and Convolutional
Recurrent Neural Network (CRNN) [29]. The last doesn’t require to go through the digit
segmentation phase as it uses the whole counter image for digit recognition.

This chapter is divided into four parts, one to describe the data augmentation method,
one for each CNN-based approach employed for counter recognition and one for final remarks
regarding the methods used.

4.2.1 Data Augmentation
A straightforward algorithm was employed, proposed in [13], to generate new artificial images
with counters that were not initially on the AMR dataset. The strategy consists on modifying the
counter images by permuting the order of its digits. Thus, it is supposed that more examples that
will help the CNNs to create an association of the digit position with the correspondent task.

Furthermore all images were converted to grayscale under the hypothesis that the noise
generated by the image collage is reduced when compared to color images. The images generated
are of lower resolution than the original, as this allows for smaller models with better run time
while still achieving high recognition performance.

In order to account for the unbalance of digit classes for training, each counter position
received the same number of different digits. Random variations of scale, rotation, translation
and brightness were also performed in the augmented dataset. Some artificially generated images
are shown in Fig. 4.1. As can be seen, the data augmentation approach works on different
meter/counter kinds, creating new training examples for the CNNs.

1For training Fast-YOLO we used the weights pre-trained on ImageNet [5], available at https://pjreddie.
com/darknet/yolo/

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
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(a)

(b)

Figure 4.1: Some images created through data augmentation: the image in the upper left corner
is the original one, while the others were generated automatically. (a) and (b) show that the same
algorithm works for counters of different kinds and aspect ratios.

4.2.2 CR-NET
CR-NET is a YOLO-based model proposed for license plate character detection and recogni-
tion [20]. This model consists of the first eleven layers of YOLO and four other convolutional
layers added to improve non-linearity. In [20], CR-NET (with input size of 240 × 80 pixels) was
capable of detect and recognize license plate characters at 448 Frames per Second (FPS). Laroca
et al. [18] also achieved great results applying CR-NET for this purpose.

The CR-NET architecture is shown in Table 4.2. As in the counter detection stage, the
anchors for our data were recalculated and adjustments in the number of filters in the last layer
were made. Furthermore, images with resolution of 400 × 106 pixels were chosen, since the
results obtained when using other sizes (e.g., 360 × 95 and 440 × 116) were worse or similar,
but with a higher computational cost. Note that the input image has the same aspect ratio of the
counters (3.79, on average) in the AMR dataset.

Table 4.2: CR-NET with some changes for counter recognition: input size of 400 × 106 pixels
and 75 filters in the last layer.

Layer Filters Size Input Output
0 conv 32 3 × 3/1 400 × 106 × 3 400 × 106 × 32
1 max 2 × 2/2 400 × 106 × 32 200 × 53 × 32
2 conv 64 3 × 3/1 200 × 53 × 32 200 × 53 × 64
3 max 2 × 2/2 200 × 53 × 64 100 × 26 × 64
4 conv 128 3 × 3/1 100 × 26 × 64 100 × 26 × 128
5 conv 64 1 × 1/1 100 × 26 × 128 100 × 26 × 64
6 conv 128 3 × 3/1 100 × 26 × 64 100 × 26 × 128
7 max 2 × 2/2 100 × 26 × 128 50 × 13 × 128
8 conv 256 3 × 3/1 50 × 13 × 128 50 × 13 × 256
9 conv 128 1 × 1/1 50 × 13 × 256 50 × 13 × 128
10 conv 256 3 × 3/1 50 × 13 × 128 50 × 13 × 256
11 conv 512 3 × 3/1 50 × 13 × 256 50 × 13 × 512
12 conv 256 1 × 1/1 50 × 13 × 512 50 × 13 × 256
13 conv 512 3 × 3/1 50 × 13 × 256 50 × 13 × 512
14 conv 75 1 × 1/1 50 × 13 × 512 50 × 13 × 75
15 detection
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Only the 5 digits detected/recognized with greater confidence were considered, since
commonly more than 5 digits are predicted. However, it is worth noting that the same digit might
be detected more than once by the network. Therefore, first, non-maximal suppression algorithm
is applied to eliminate redundant detections. Although highly unlikely, it is also possible that
less than 5 digits are detected by the CR-NET. In such cases, leading zeros were employed (e.g.,
1234→ 01234).

4.2.3 Convolutional Recurrent Neural Network (CRNN)
The CRNN [29] model was designed for the scene text recognition task, which requires much
more robustness than traditional OCR methods to handle a wide variety of fonts, backgrounds,
lighting conditions, scales and angles.

This model consists of convolutional layers followed by recurrent layers, in addition to
a custom transcription layer to convert the per-frame predictions into a label sequence. Given
the cropped text (e.g., the counter), the convolutional layers act as a feature extractor, which is
then transformed into a sequence of feature vectors and fed into a Long Short-Term Memory
(LSTM) [12] recurrent layer. This layer handles the input as a sequence labeling problem,
predicting a label distribution yt for each frame x = x1, x2, ..., xt . Since the LSTM is directional
and the image-based sequences contain useful context information in both directions, two LSTMs
are trained on the input sequence instead of one, the first on the input sequence as-is and the
second on a reversed copy of the input sequence. Also, by stacking these bidirectional LSTMs,
higher level of abstraction and significant better performance were attained in tasks such as
speech recognition [14].

The Connectionist Temporal Classification (CTC) algorithm [15] is adopted for sequence
decoding. Given the feature vectors X = [x1, x2, ..., xt] and the label sequence Y = [y1, y2, ..., yt],
CTC first finds an accurate mapping from X toY by calculating the conditional probability P(Y |X)
in the training phase. Then, CTC infers Y given an X by computing Y∗ = argmaxY P(Y |X). The
CTC’s objective function for a single (X,Y ) is defined by

P(Y |X) =
∑

AεAX,Y

T∏
t=1

Pt(at |X). (4.2)

where AX,Y is the set of valid alignments. The advantage of CTC lies in the fact that it does not
require an accurate alignment (correspondence of the elements) of X and Y .

Graves et al. [15] presented an efficient approximation for these conditional probabilities
without the direct calculation of equation 4.2. The CRNN architecture is shown in Table 4.3.

The CRNN model was trained using PyTorch [22], with its default values for batch
normalization (epsilon = 10−5, momentum = 0.1) and adam optimization method [17] (lr = 10−3,
beta1 = 0.5, beta2 = 0.999, epsilon = 10−8), mini-batch size of 128 images and 12 epochs. The
input counter images were all resized to 40x160 pixels.

4.3 Final Remarks
The counters in the meter images are generally much smaller than the image itself, which requires
a detection phase in the pipeline to extract the counter before the recognition phase, and the
Fast-YOLO approach, commonly used for object recognition, was the method used to solve it.
Two methods were tested for the counter recognition phase, named CR-NET and CRNN. The
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Table 4.3: CRNN layers and hyperparameters.

Layer Filters Size Input Output
0 conv 64 3 × 3/1 40 × 160 × 1 40 × 160 × 64
1 max 2 × 2/2 40 × 160 × 64 20 × 80 × 64
2 conv 128 3 × 3/1 20 × 80 × 64 20 × 80 × 128
3 max 2 × 2/2 20 × 80 × 128 10 × 40 × 128
4 conv 256 3 × 3/1 10 × 40 × 128 10 × 40 × 256
5 conv 256 3 × 3/1 10 × 40 × 256 10 × 40 × 256
6 max 2 × 2/2 × 1 10 × 40 × 256 5 × 41 × 256
7 conv 512 3 × 3/1 5 × 41 × 256 5 × 41 × 512
8 batch
9 conv 512 3 × 3/1 5 × 41 × 512 5 × 41 × 512
10 batch
11 max 2 × 2/2 × 1 5 × 41 × 512 2 × 42 × 512
12 conv 512 3 × 3/1 1 × 41 × 512 1 × 41 × 512

Layer Input Size Hidden Layer Size Output Size
13 LSTM 512 256 256
14 LSTM 256 256 11
15 recognition

CR-NET method requires a digit segmentation before digit recognition, while the CRNN uses
the whole counter to perform the digit recognition.

To improve the performance in the digit recognition phase, data augmentation was
performed in the cropped counters, generating a large number of images with permuted digits,
greatly increasing the number of images to train the models.
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Chapter 5

Experimental Results

In this chapter, experiments are performed to verify the effectiveness of the CNN-based methods
in the AMR dataset. The experiments were implemented on a NVIDIA Titan XP GPU (3,840
CUDA cores and 12 GB of RAM). The YOLO-based models are trained using the Darknet
framework [26].

First counter detection was evaluated, since the counters for recognition are from the
detection results, rather than cropped directly from the ground truths. Thus, a well-performed
counter detection is essential to achieve good recognition results.

5.1 Counter Detection
To evaluate counter detection, the bounding box evaluation defined in the PASCAL VOC
Challenge [9] was employed, where the predicted bounding box is considered to be correct if
its Intersection over Union (IoU) with the ground truth is greater than 50% (IoU ≥ 0.5). This
metric was also used in previous works [21, 33], being interesting because penalizes both over-
and under-estimates objects.

Some detection results achieved by the Fast-YOLO model are shown in Fig. 5.1. The
network correctly detected 99.75% of the counters with a mean IoU of 0.83, failing to locate the
counter in just two images (798/800). Actually, it is still possible to recognize the digits in these
cases, since they were detected (with IoU ≤ 0.5) and all digits are within the ROI after adding a
margin (as explained in Section 4.1). In the validation set, a margin of 20% (of the bounding box
size) is required so that all digits are within the ROI. Thus, a 20% margin was applied in the test
set as well. Fig. 5.2 shows both cases where the counters were detected with IoU ≤ 0.5 before
and after adding this margin. Note that, in this way, the meter can be recognized even in poor
counter detections.

In terms of computational speed, the Fast-YOLO model takes about 4.03 ms per image
(248 FPS). The following parameters were used for training the network: 60k iterations (max
batches) and learning rate = [1-3, 1-4, 1-5] with steps at 25k and 35k iterations.

5.2 Counter Recognition
Here both counter and digit recognition accuracy are reported. The former is defined as the
number of correctly recognized counters divided by the test set size, since each image has
only one meter/counter. The latter is the number of correctly recognized digits divided by the
number of digits in the test set. Additionally, all CNN models were trained with and without
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Figure 5.1: Samples of counter detection obtained with the Fast-YOLO model in the AMR
dataset.

Figure 5.2: Bounding boxes predicted by the Fast-YOLO model before and after adding the
margin (20% of the bounding box size).

data augmentation, and both results are reported. Thus, it is clear how data augmentation affects
the performance of each model. Tables 5.1 and 5.2 summarize the accuracy and computational
speed of the approaches.

Table 5.1: Accuracy CR-NET and CRNN with and without data agumentation

Approach Accuracy
Digits Counters

CR-NET (original training set) 98.26% 91.62%
CRNN (original training set) 96.82% 85.10%

CR-NET (with data augmentation) 98.66% 93.50%
CRNN (with data augmentation) 98.90% 94.62%

It is important to notice that a minor decrease in digit accuracy can greatly impact
counter performance since its value is roughly translated to the power of 5 of the digit accuracy.
Meter models with more digits can thus aggravate even more the performance of such systems.

Table 5.2: Time performance of CR-NET and CRNN on GPU

Approach Time (ms) FPS

CR-NET 4.03 248
CRNN 8.84 113
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5.3 Final Remarks
As observed, the Fast-YOLO method has very high accuracy (99.75%) on dealing with the
problem of counter detection on the AMR dataset, and its computational speed indicates being
suitable to be implemented in mobile devices. For counter recognition, both CRNN and CR-NET
possess very similar digit recognition accuracy (0.24% difference), but that translates to 1.12%
difference in accuracy when dealing with counter recognition in favor to the CRNN method.
That difference may be compensated by its computational speed being more than double that of
the CRNN, making it better suited for mobile devices.
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Chapter 6

Conclusion

In this work, the AMR dataset was described to serve as benchmark to new approaches to
automatic meter reading. Also, a complete pipeline for the task of automatic meter reading
was presented while analyzing two methods for the specific task of digit recognition. For the
counter detection part, the Fast-YOLO reached nearly 100% accuracy (798 of 800 imagens) while
managing to detect the ROI at 248FPS on GPU, being a model suitable for handheld devices.
For digit recognition, the CRNN performed a marginaly better than the CR-NET (94.62% as
compared to 93, 5%) while being twice as computationally intensive.

The system was designed mainly to deal with the electricity meter models present in the
AMR dataset, but it can be easily modified to accommodate new models (including water and
gas meters), being the number of examples the main constraint. Since the AMR dataset contains
only meters with 5 digits, small changes in the architecture may be required to be used along
with the CR-NET method. The CRNN, being a sequence-based method, is unconstrained by
the number of outputs, so it can deal with meter models with different number of digits without
changes in the architecture.

The automatic meter reading task is still an open problem in the field of computer vision
and scene text recognition. A variety of meters, including many old models, are in use around
the globe, an the system must account for these variations in order to be effectively effectively
deployed. Pointer meter readers are also commonly used, and specific computer vision methods
to extract the meter information must be developed to be used along with the methods described
in this paper. Further works also include evaluating performance in handheld devices with
different hardware and configurations, refine the methods for digit recognition and compare such
methods with human performance.



27

Bibliography

[1] AlexeyAB. YOLOv2 and YOLOv3: how to improve object detection.
https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects, 2018.
Accessed: 2018-06-14.

[2] A. Anis, M. Khaliluzzaman, M. Yakub, N. Chakraborty, and K. Deb. Digital electric meter
reading recognition based on horizontal and vertical binary pattern. In Int. Conference on
Electrical Information and Communication Technology, pages 1–6, Dec 2017.

[3] Martin Cerman, Gayane Shalunts, and Daniel Albertini. A mobile recognition system for
analog energy meter scanning. In Advances in Visual Computing, pages 247–256. Springer
International Publisher, 2016.

[4] Copel. Energy Company Of Paraná. http://www.copel.com/hpcopel/
english/, 2018. Accessed: 2018-04-24.

[5] J. Deng, W. Dong, R. Socher, L. J. Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition,
pages 248–255, June 2009.

[6] S. Du, M. Ibrahim, M. Shehata, and W. Badawy. Automatic license plate recognition
(ALPR): A state-of-the-art review. Trans. on Circuits and Systems for Video Technology,
23(2):311–325, Feb 2013.

[7] V. C. P. Edward. Support vector machine based automatic electric meter reading system. In
International Conference on Computational Intelligence and Computing Research, pages
1–5, Dec 2013.

[8] L. A. Elrefaei, A. Bajaber, S. Natheir, N. AbuSanab, and M. Bazi. Automatic electricity
meter reading based on image processing. In IEEE Jordan Conference on Applied Electrical
Engineering and Computing Technologies (AEECT), pages 1–5, Nov 2015.

[9] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (VOC) challenge. International Journal of
Computer Vision, 88(2):303–338, Jun 2010.

[10] I. Gallo, A. Zamberletti, and L. Noce. Robust angle invariant GAS meter reading. In
International Conference on Digital Image Computing: Techniques and Applications, pages
1–7, Nov 2015.

[11] Yunze Gao, Chaoyang Zhao, Jinqiao Wang, and Hanqing Lu. Automatic watermeter digit
recognition on mobile devices. In Internet Multimedia Computing and Service, pages
87–95. Springer Singapore, 2018.

http://www.copel.com/hpcopel/english/
http://www.copel.com/hpcopel/english/


28

[12] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: continual prediction
with LSTM. In International Conference on Artificial Neural Networks, volume 2, pages
850–855 vol.2, 1999.

[13] Gabriel Resende Gonçalves, Matheus A. Diniz, Rayson Laroca, David Menotti, and
William Robson Schwartz. Low-resolution license plate recognition by multi-task deep
learning. CoRR, abs/xxxx.xxxxx, 2018.

[14] A. Graves, A. r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In International Conference on Acoustics, Speech and Signal Processing, pages
6645–6649, May 2013.

[15] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist
temporal classification: Labelling unsegmented sequence data with recurrent neural
networks. In International Conference on Machine Learning (ICML), pages 369–376, 2006.

[16] Yasin Kabalci. A survey on smart metering and smart grid communication. Renewable and
Sustainable Energy Reviews, 57:302 – 318, 2016.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[18] Rayson Laroca, Evair Severo, Luiz A. Zanlorensi, Luiz S. Oliveira, Gabriel Resende
Gonçalves, William Robson Schwartz, and David Menotti. A robust real-time automatic
license plate recognition based on the YOLO detector. CoRR, 2018.

[19] D. Jabba M. Calle M. Rodriguez, G. Berdugo and M. Jimeno. HD MR: a new algorithm for
number recognition in electrical meters. Turkish Journal of Elec. Engineering & Comp.
Sciences, 22:87–96, Jan 2014.

[20] S. Montazzolli and C. R. Jung. Real-time brazilian license plate detection and recognition
using deep convolutional neural networks. In 30th Conference on Graphics, Patterns and
Images (SIBGRAPI), pages 55–62, Oct 2017.

[21] Angelo Nodari and Ignazio Gallo. A multi-neural network approach to image detection and
segmentation of gas meter counter. In IAPR Conference on Machine Vision Applications,
pages 239–242, 2011.

[22] Adam Paszke et al. Automatic differentiation in PyTorch. 2017.

[23] D.B.P. Quintanilha et al. Automatic consumption reading on electromechanical meters
using HoG and SVM. In Latin American Conf. on Networked and Electronic Media, pages
11–15, Nov 2017.

[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time
object detection. In IEEE Conference on Computer Vision and Pattern Recognition, pages
779–788, June 2016.

[25] J. Redmon and A. Farhadi. YOLO9000: Better, faster, stronger. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 6517–6525, July 2017.

[26] Joseph Redmon. Darknet: Open source neural networks in C. http://pjreddie.
com/darknet/, 2013–2018.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/


29

[27] J. Salamon and J. P. Bello. Deep convolutional neural networks and data augmentation
for environmental sound classification. IEEE Signal Processing Letters, 24(3):279–283,
March 2017.

[28] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85 – 117, 2015.

[29] B. Shi, X. Bai, and C. Yao. An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(11):2298–2304, Nov 2017.

[30] D. Shu, S. Ma, and C. Jing. Study of the automatic reading of watt meter based on image
processing technology. In IEEE Conf. on Industrial Electronics and Applications, pages
2214–2217, May 2007.

[31] R. Smith. An overview of the Tesseract OCR Engine. In International Conference on
Document Analysis and Recognition, volume 2, pages 629–633, Sept 2007.

[32] S. Tripathi, G. Dane, B. Kang, V. Bhaskaran, and T. Nguyen. LCDet: Low-complexity
fully-convolutional neural networks for object detection in embedded systems. In IEEE
Conf. on Comp. Vision and Pattern Recognition Workshops, pages 411–420, July 2017.

[33] Marco Vanetti, Ignazio Gallo, and Angelo Nodari. Gas meter reading from real world
images using a multi-net system. Pattern Recognition Letters, 34(5):519–526, 2013.

[34] Bichen Wu, Alvin Wan, Forrest Iandola, Peter H. Jin, and Kurt Keutzer. SqueezeDet:
Unified, small, low power fully convolutional neural networks for real-time object detection
for autonomous driving. CoRR, 2016.

[35] Yunzhou Zhang, Shanbao Yang, Xiaolin Su, Enyi Shi, and Handuo Zhang. Automatic
reading of domestic electric meter: an intelligent device based on image processing and
ZigBee/Ethernet communication. Journal of Real-Time Image Processing, 12(1):133–143,
Jun 2016.

[36] L. Zhao, Y. Zhang, Q. Bai, Z. Qi, and X. Zhang. Design and research of digital meter
identifier based on image and wireless communication. In International Conference on
Industrial Mechatronics and Automation, pages 101–104, May 2009.

[37] Shutao Zhao, Baoshu Li, Jinsha Yuan, and Guiyan Cui. Research on remote meter automatic
reading based on computer vision. In IEEE/PES Transmission Distribution Conf. Expo.:
Asia and Pacific, pages 1–4, 2005.


	Introduction
	Related Work
	Final Remarks

	The AMR Dataset
	Final Remarks

	Methodology
	Counter Detection
	Counter Recognition
	Data Augmentation
	CR-NET
	*crnn

	Final Remarks

	Experimental Results
	Counter Detection
	Counter Recognition
	Final Remarks

	Conclusion
	Bibliography

